TWISTED SUMS AND A PROBLEM OF KLEE

BY

N. T. PECK

Department of Mathematics University of Illinois, Urbana, IL 61801, U.S.A.

To Victor Klee

ABSTRACT

Let F be a quasi-linear map on a separable normed space E , and assume that F splits on an infinite-dimensional subspace of E . Then the twisted sum topology on $\mathbb{R} \otimes_F E$ can be written as the supremum of a nearly convex topology and a trivial dual topology. (This partially answers a question of Klee.) The result applies to the Ribe space and to James's space.

In [5], Klee asked whether every vector topology τ on a real vector space X is the supremum of a nearly convex topology τ_1 and a trivial dual topology τ_2 . Recall that a vector topology τ_1 on X is nearly convex if for every x not in the τ_1 -closure of $\{0\}$ there is f in $(X, \tau_1)^*$ with $f(x) \neq 0$; τ_2 is trivial dual if $(X, \tau_2)^* = \{0\}$. We do not require that τ_1 or τ_2 be Hausdorff, even if τ itself is Hausdorff. The topology τ is the supremum of τ_1 and τ_2 if τ_1 and τ_2 are weaker than τ , and if for every τ -neighborhood U of the origin 0 there are a τ_1 -neighborhood V of 0 and a τ_2 -neighborhood W of 0 such that $U \supset V \cap W$.

In [5], Klee proved that the usual topology on ℓ_p , $0 < p < 1$, is not the supremum of a locally convex topology and a trivial dual topology; this and other examples make the question at the beginning of this paper a natural one. Some related questions on suprema of linear topologies were studied in [7].

Given any vector topology τ on X, let $K(\tau) = \bigcap \{f^{-1}(0): f \in (X,\tau)^*\}$. It is trivial to answer Klee's question affirmatively in the case that $K(\tau)$ is complemented. For in this case, $K(\tau)$ must be a trivial dual space in the relative topology; and if L is a complement to $K(\tau)$ in X, the relative topology on L is

Received December 1, 1991 and in revised form October 21, 1992

nearly convex. Now simply let τ_1 be the product of the trivial topology on $K(\tau)$ and the relative topology on L ; and let τ_2 be the product of the relative topology on $K(\tau)$ and the trivial topology on L. Then $\tau = \sup(\tau_1, \tau_2)$.

So the interesting case is when $K(\tau)$ is uncomplemented. We study the problem when (X, τ) is the **twisted sum** of a separable normed space and the real line. Recall that a real function F on a normed space E is quasi-linear if

- (0) (i) $F(rx) = rF(x)$ for all scalars r and all x in E;
	- (ii) $|F(x + y) F(x) F(y)| \leq C(||x|| + ||y||)$ for all x, y in E and some constant C.

Now define the **twisted sum** of the real line and E (with respect to F) as the vector space $X_F = \mathbb{R} \times E$ equipped with quasi-norm $||[(r, x)||] = |r - F(x)| + ||x||$. It is easy to verify that

$$
|||(r_1+r_2,x_1+x_2)||| \leq (C+1)[|||(r_1,x_1)|||+|||(r_2,x_2)|||.
$$

The space E is said to be a K-space if the subspace $\mathbb{R} \times \{0\}$ is complemented in X_F for every quasi-linear map F on E. (This is a slight abuse of terminology; strictly speaking, it is the completion of E that is the K -space.) So we are interested in Klee's question for the non- K spaces. The only known non- K spaces are ℓ_1 -like. The Ribe function is defined on ℓ_1^0 , the space of finitely supported elements of ℓ_1 , by

$$
F_0(x) = \sum_i x_i \ell n |x_i| - \left(\sum_i x_i\right) \ell n \left|\sum_i x_i\right|
$$

with the convention that $0\ell n0 = 0$. Ribe [8] proved that F_0 is quasi-linear on ℓ_1^0 and used F_0 to show that ℓ_1 is not a K-space. Closely related functions were used by Kalton [2] and Roberts [9] to prove the same result. The reflexive space $\ell_2(\ell_1^n)$ is not a K -space, and the B -convex spaces are K -spaces [2]. Kalton and Roberts [4] showed that c_0 and ℓ_{∞} are K-spaces. It is not known whether the James space is a K-space. We are studying Klee's problem for spaces E and quasi-linear maps F on E such that $\mathbb{R} \times \{0\}$ is not complemented in X_F . By Theorem 2.5 of [3], there is no linear map T on E such that $|T(x) - F(x)| \leq C ||x||$ for all x in E (i.e. F does not split on E). The corollary to our main theorem implies that none of the spaces above can be a counterexample for Klee's question, since the F concerned does split on an infinite-dimensional subspace.

We now state our main result:

MAIN THEOREM: Let E be an \aleph_0 -dimensional normed space. Assume F is a *quasi-linear function on E* for *which* there are a *linearly independent sequence* (x_i) in E and a linear map T on span (x_i) such that

(1) $|T(x) - F(x)| \leq C ||x||$ for all x in span(x_i) and some constant C.

Then there are a trivial dual topology τ_2 on $\mathbb{R} \times E$, weaker than the quasi-norm *topology, and a* τ_2 *-neighborhood U of 0 such that if* $(r, x) \in U$ and $||x|| \leq 1$, *then* $|||(r,x)||| < C$ for some constant C.

Before we prove the theorem, we set the framework for the construction with some auxiliary results. We begin with:

Definition: Suppose (G_i) is a finite or infinite sequence of subsets of E, and (n_i) is a sequence of positive integers (of the same length as (G_i)). The (n_i) -sum of (G_i) is the set of all finite sums

$$
z = r_1 z_1 + r_2 z_2 + r_3 z_3 + \cdots
$$

where $|r_i| \leq 1$ for all i and z_1, \ldots, z_{n_1} are in $G_1, z_{n_1+1}, \ldots, z_{n_1+n_2}$ are in G_2 , $z_{n_1+n_2+1},\ldots, z_{n_1+n_2+n_3}$ are in G_3 , etc. Note that if $|r| \leq 1$, rz is also in the (n_i) -sum. \blacksquare

LEMMA 1: Let X be a vector space and let (U_n) be a neighborhood base at 0 for a *pseudo-metrizable vector topology on X*, *chosen so that* $U_{n+1} + U_{n+1} \subset U_n$ for all n and $[-1, 1]U_n \subset U_n$ for all n. Let (F_n) be a sequence of subsets of *X*, chosen so that $[-1, 1]F_n \subset F_n$ and $F_{n+1} + F_{n+1} \subset F_n$, for all *n*. Then the sequence $(U_n + F_n)$ is a neighborhood base at 0 for a pseudo-metrizable vector *topology on X which is weaker than the original topology.*

Proof: Immediate.

In the next lemma, we specify F_n more closely.

LEMMA 2: Let X and (U_n) be as in Lemma 1. Let (G_n) be a sequence of subsets *of X.* Define subsets F_n of X as follows: for each *n* in N, F_n is the (2^{i-n}) -sum *of the G_i's for* $i \geq n$ *. Then* (F_n) *satisfies the hypotheses of Lemma 1.*

Proof: $[-1, 1]F_n \subset F_n$ as remarked already. For a typical sum in $F_{n+1} + F_{n+1}$, at most $2 \cdot 2^{i-(n+1)} = 2^{i-n}$ of the z_i 's are in G_i for $i \geq n+1$, so $F_{n+1} + F_{n+1} \subset F_n$. **|**

Remark: Note that there is an apriori bound on the number of elements of G_i appearing in a sum in F_n , for any n: the bound is 2^{i-1} ; we use the looser bound 2^i .

In our construction, (U_n) is a neighborhood base at 0 for the twisted sum topology. The G_i 's of Lemma 2 will be chosen so that (U_n+F_n) is a neighborhood base at 0 for a trivial dual topology τ_2 ; they will also have to be chosen so that τ is the supremum of τ_1 and τ_2 . The next lemma identifies the topology τ_1 :

LEMMA 3: Let F be a quasi-linear map on a normed space E and let $X_F =$ $\mathbb{R} \times E$ with the quasi-norm $|||(r,x)||| = |r - F(x)| + ||x||$. *Assume* $\mathbb{R} \times \{0\}$ *is* not complemented in X_F . Then the *strongest nearly convex topology on* $\mathbb{R} \times E$ *which is weaker* than *the quasi-norm topology has a neighborhood* base at 0 *of* sets of the form $\{(r, x): ||x|| < \eta\}.$

Proof: Sets of the above type are a neighborhood base at 0 for a nearly convex topology weaker than τ , the quasi-norm topology. The closure of $\{0\}$ for this weaker topology is $\mathbb{R} \times \{0\}$; and if (r, x) is in X_F and $x \neq 0$, there is f in E^* with $f(x) \neq 0$. Then $f(\pi(r, x)) \neq 0$, where π is the quotient map of X_F onto E.

Now suppose ν is a nearly convex topology on $\mathbb{R} \times E$, weaker than the quasinorm topology. Since $\mathbb{R} \times \{0\} = K(\tau)$ is not complemented, the *v*-closure of ${0}$ must contain $\mathbb{R} \times {0}$. Let U be *v*-open containing 0. Choose V *v*-open containing 0, with $V + V \subset U$. Choose $\epsilon > 0$ so that if $|||(r, x)||| < \epsilon$, then $(r, x) \in V$.

Now, $|||(F(x),x)||| = ||x||$, so if $||x|| < \epsilon$, then $(F(x),x) \in V$. Also, $(r-F(x),0)$ is in V since it is in the v-closure of 0, and so (r, x) is in U.

Notation: Let Z be a Banach space with a basis (v_i) . Let (v_i^*) be the coordinate functionals on Z. For *n* a positive integer and x in Z, set $x \mid_{[1,n]} = \sum_{i=1}^n v_i^*(x)v_i$, and $x |_{(n,\infty)} = \sum_{i=n+1}^{\infty} v_i^*(x)v_i$. Say that x is to the right of n if $v_i^*(x) = 0$ for $i\leq n$.

We need two more preliminary results before proving our main theorem:

LEMMA 4: Let Z be a Banach space with a monotone basis (v_i) , let K be a *compact subset of Z, and let* $\epsilon > 0$. Then there is n so that if y is to the right of *n* and $x \in K$, then $||x|| < ||x + y|| + \epsilon$.

Proof: Choose n so that $||x||_{(n,\infty)} || < \epsilon$ for every x in K. Now if y is to the right of n, then $||x||_{[1,n]} || = ||(x + y)||_{[1,n]} || \le ||(x + y)||$, since the basis is monotone,

 $\|x\| < \|x + y\| + \epsilon.$

LEMMA 5: Let y_i , $1 \leq i \leq k$, be linearly independent elements of a normed space *E.* Define $y_{k+1} = -\sum_{i=1}^{k} y_i$, and let $\eta > 0$. Set $z_i = my_i$, $1 \le i \le k+1$, for some m > 0. *Then we can choose m so large that the foIlowing condition is satisfied: if at most k of the* r_i *'s are non-zero, and if* $\left\| \sum_{i=1}^{k+1} r_i z_i \right\| < 3$ *, then* $\sum_{i=1}^{k+1} |r_i| < \eta$ *.*

Proof: Choose $M > 0$ so that $\sum_{i=1}^{k} |\alpha_i| \leq M \|\sum_{i=1}^{k} \alpha_i y_i\|$ for all k-tuples (α_i) . Now suppose $\left\| \sum_{i=1}^{k+1} r_i z_i \right\| < 3$, with at most k r_i 's non-zero. If $r_{k+1} = 0$, then

$$
\sum_{i=1}^k |r_i| \le \frac{3M}{m} < \eta
$$

for $m > 3M/\eta$.

If $r_{k+1} \neq 0$, then some other r_i is 0, r_1 , say; now,

$$
\Big\|\sum_{i=1}^{k+1} r_i z_i\Big\| = \Big\| - m r_{k+1} y_1 + \sum_{i=2}^{k} m (r_i - r_{k+1}) y_i\Big\| < 3.
$$

Therefore

$$
|r_{k+1}| + \sum_{i=2}^{k+1} |r_i - r_{k+1}| < \frac{3M}{m},
$$

SO

$$
\sum_{i=2}^{k+1} |r_i| \le |r_{k+1}| + \sum_{i=2}^{k+1} |r_i - r_{k+1}| + k|r_{k+1}|
$$

$$
< \frac{3(k+1)M}{m} < \eta
$$

for $m > 3(k + 1)M/n$.

Proof of Main Theorem: We will construct inductively the sets G_n used in Lemma 2. That lemma will give us the sets F_n and then Lemma 1 will provide the topology.

We may assume that for x_i and T in the theorem, $T(x_i) = 0$ for each i. This is possible since for each *i*, there is a scalar α_i so that $T(x_{2i-1} + \alpha_i x_{2i}) = 0$; now the sequence $x'_i = x_{2i-1} + \alpha_i x_{2i}$ also satisfies condition (1) of the Theorem.

We can regard E as a subspace of the Banach space $Z = C[0, 1]$, which has a monotone basis. Any positive scalar multiple of the quasi-norm yields the same topology as the quasi-norm, so we can and do assume that the constant C in $0(i)$ above is 1. This can be done by multiplying F by a suitable positive constant.

Finally, we use $\|\cdot\|$ to refer to the norm on Z and on E. We only calculate norms of elements of E , but we do use the monotonicity of (v_i) in Z .

Now we begin the construction of (G_i) .

Choose $0 < c_n \leq 2^{-(n+3)}$ (and thus $\sum_{n=1}^{\infty} c_n < \frac{1}{4}$). Let (d_j) be any sequence whose linear span is E, and let (e_i) be an indexing of (d_i) such that each d_i occurs infinitely often in (e_i) . We can assume that $||d_i|| \leq 1$ and that $|F(d_i)| \leq 1$ for each j, by multiplying d_i by a positive constant.

Assume that finite sets $G_0, G_1, \ldots, G_{n-1}$ have been constructed, with $G_0 =$ {0}, satisfying the following conditions:

(2) for each $1 \leq i \leq n-1$, G_i is a finite set $(w_{i,j}: 1 \leq j \leq 2^{i+1})$, with

$$
w_{i,j} = e_i + m_i x_{\ell(i,j)}, \quad j \le 2^i,
$$

$$
w_{i,2^i+1} = e_i - \sum_{j=1}^{2^i} m_i x_{\ell(i,j)};
$$

here, (x_i) is the sequence in the statement of the theorem.

 (3) Set $z_{i,j} = w_{i,j} - e_i$. Then if $\left\| \sum_{j=1}^{2^i+1} r_j z_{i,j} \right\| < 3$ with at most $2^i r_j$'s non-zero, $\sum_{i=1}^{2^i+1} |r_i| < c_i$.

To define G_n , let K'_n be the (2^i) -sum of G_i for $i \leq n-1$, (so $K'_1 = \{0\}$) and let $K_n = K'_n + [-2^n, 2^n]e_n$. Then K_n is a compact subset of $E \subset Z$. By Lemma 4, there is an integer s_n such that if y is to the right of s_n then $||x|| < ||x + y|| + c_n$ for all x in K_n . By the linear independence of the sequence (x_i) , we can choose $x_{\ell(n,1)},\ldots, x_{\ell(n,2^n)}$, all to the right of s_n , with $\ell(n,j) < \ell(n,j')$ if $j < j'$. For ease of notation, put $x_{n,i} = x_{\ell(n,i)}, 1 \leq i \leq 2^n$, and put $x_{n,2^n+i} = -\sum_{i=1}^{2^n} x_{n,i}$.

By Lemma 5, we can choose m_n so large that if

$$
\Big\|\sum_{j=1}^{2^n+1} r_{n,j} m_n x_{n,j}\Big\|<3,
$$

with at most 2^n of the $r_{n,j}$ non-zero, then

(4)
$$
\sum_{j=1}^{2^n+1} |r_{n,j}| < c_n.
$$

Finally, for $1 \leq i \leq 2^n + 1$, put

$$
w_{n,i} = e_n + m_n x_{n,i}
$$

and let

$$
G_n = (w_{n,i}), \quad 1 \le i \le 2^n + 1.
$$

Note that since $\sum_{i=1}^{2^{n}+1} x_{n,i} = 0$, $e_n \in \text{co}G_n$. (We denote the convex hull of A by coA.) This finishes the construction of (G_i) .

Now let (F_n) be the subsets of E used in Lemma 1: F_n is the (2^{i-n}) sum of (G_i) for $i \geq n$. Let (U_n) be a neighborhood base at 0 for the quasi-norm topology on $\mathbb{R} \times E$, with $U_{n+1} + U_{n+1} \subset U_n$ and $[-1, 1]U_n \subset U_n$, for all n; also assume that $|||w||| < 1$ if $w \in U_1$. Let τ_2 be the topology yielded by Lemma 1.

We claim that τ_2 is trivial dual. To see this, note that for $m \geq n$, $e_m \in$ $co(w_{m,i}) \subset \text{co}F_n \subset \text{co}(F_n + U_n)$; since each d_j occurs infinitely often in the sequence (e_m) , $K(\tau_2)$ contains every d_j and therefore contains $\{0\} \times E$. Also, $(1,0) \in \text{col}U_n \subset \text{col}(U_n + F_n)$ for every n, so $K(\tau_2)$ contains $\mathbb{R} \times \{0\}$. This proves the claim.

Now suppose that

$$
x = \sum_{i=1}^{n} \sum_{j=1}^{2^{i}+1} r_{i,j}(e_i + m_i x_{i,j})
$$

is in F_1 and that $||x|| < 1$. We will first prove that $|F(x)| < 9$.

Toward that end: since the $x_{n,j}$ are to the right of s_n , the construction of G_n implies that

(5)
$$
\|\sum_{i=1}^{n-1}\sum_{j=1}^{2^i+1}r_{i,j}(e_i+m_ix_{i,j})+\sum_{j=1}^{2^n+1}r_{n,j}e_n\|<1+c_n
$$

from which, since $||x|| < 1$,

(6)
$$
\|\sum_{j=1}^{2^n+1} r_{n,j} m_n x_{n,j}\| < 2 + c_n < 3.
$$

Now from (4) and (6), we have

(7)
$$
\sum_{j=1}^{2^n+1} |r_{n,j}| < c_n;
$$

combining this with (5), we have

(8)
$$
\|\sum_{i=1}^{n-1}\sum_{j=1}^{2^i+1}r_{i,j}(e_i+m_ix_{i,j})\|<1+2c_n.
$$

For the induction step, assume that for some ℓ ,

(9)
$$
\|\sum_{i=1}^{\ell} \sum_{j=1}^{2^i+1} r_{i,j}(e_i + m_i x_{i,j})\| < 1 + 2c_n + \cdots + 2c_{\ell+1}.
$$

Since the $x_{\ell,j}$ are to the right of s_{ℓ} , the construction of G_{ℓ} implies that

(10)
$$
\|\sum_{i=1}^{\ell-1} \sum_{j=1}^{2^i+1} r_{i,j}(e_i+m_ix_{i,j})+\sum_{j=1}^{2^{\ell}+1} r_{\ell,j}e_{\ell}\|<1+2c_n+\cdots+2c_{\ell+1}+c_{\ell},
$$

from which

(11)
$$
\|\sum_{j=1}^{2^{\ell}+1} r_{\ell,j} m_{\ell} x_{\ell,j}\| < 2 + 4c_n + \cdots + 4c_{\ell+1} + c_{\ell} < 3.
$$

Now from (4) and (11), we have

 $\ddot{}$

(12)
$$
\sum_{j=1}^{2^{\ell}+1} |r_{\ell,j}| < c_{\ell};
$$

combining this with (10), we obtain

(13)
$$
\|\sum_{i=1}^{\ell-1} \sum_{j=1}^{2^i+1} r_{i,j}(e_i + m_i x_{i,j})\| < 1 + 2c_n + \cdots + 2c_\ell,
$$

recalling that $||e_i|| \leq 1$ **. This finishes the induction step.**

The above argument has yielded that

(14)
$$
\|\sum_{j=1}^{2^i+1} r_{i,j} e_i\| < c_i
$$

for each *i*; from this and $||x|| < 1$, we have

(15)
$$
\|\sum_{i=1}^n \sum_{j=1}^{2^i+1} r_{i,j} m_i x_{i,j}\| < 1 + \sum_{n=1}^\infty c_n < 2.
$$

From (15) and (1), recalling $T(x_{i,j}) = 0$,

$$
\left|F\left(\sum_{i=1}^n \sum_{j=1}^{2^i+1} r_{i,j} m_i x_{i,j}\right)\right| < 2.
$$

To estimate

$$
F\left(\sum_{i=1}^n\sum_{j=1}^{2^i+1}r_{i,j}e_i\right),\,
$$

recall that $|F(e_i)| \leq 1$ for each i, so

$$
\left|F\left(\sum_{j=1}^{2^i+1}r_{i,j}e_i\right)\right|<2^{-i}.
$$

Therefore

$$
\left| F\left(\sum_{i=1}^n \left(\sum_{j=1}^{2^i+1} r_{i,j} e_i\right)\right) \right| \le \sum_{i=1}^n 2^{-i} + \sum_{i=1}^n i \left\| \sum_{j=1}^{2^i+1} r_{i,j} e_i \right\|
$$

<
$$
< 1 + \sum_{i=1}^n i \cdot 2^{-i} < 4
$$

(using $|F(\sum u_i)| \leq \sum |F(u_i)| + \sum i||u_i||$). Finally,

$$
|F(x)| \le 2 + 4 + \Big\|\sum_{i=1}^{n} \sum_{j=1}^{2^i+1} r_{i,j} e_i\Big\| + \Big\|\sum_{i=1}^{n} \sum_{j=1}^{2^i+1} r_{i,j} m_i x_{i,j}\Big\|
$$

< 2 + 4 + 1 + 2 = 9.

To complete the proof of the theorem, suppose $(r, x) \in U_1 + F_1$ and $||x|| \leq 1$. Write $(r, x) = (r, y) + (0, z)$, with $(r, y) \in U_1$ and $z \in F_1$. Then $|r - F(y)| + ||y|| \leq 1$; from this and $||x|| \leq 1$ follows $||z|| \leq 2$. Now since $z \in F_1$, the preceding paragraph implies $|F(z)| < 18$. At last,

$$
|r - F(x)| \le |r - F(y)| + |F(y) - F(x)|
$$

\n
$$
\le 1 + |F(y) - F(x)|
$$

\n
$$
\le 1 + |F(z)| + ||z|| + ||x||
$$

\n
$$
< 22,
$$

so $|||(r,x)||| < 23$. The proof is complete. \Box

COROLLARY: Let E be a separable normed space and let E_0 be an \aleph_0 -dimensional *subspace of E which is* dense *in E. Assume that there is a quasi-linear map F* on E_0 which splits on an infinite-dimensional subspace of E_0 . Then the twisted sum topology on $\mathbb{R} \otimes_F E$ is the supremum of a trivial dual topology and a nearly *exotic topology.*

Proof: Let q denote the quotient map of $\mathbb{R} \otimes_F \tilde{E}$ onto \tilde{E} , where \tilde{E} is the completion of E. (For $x \in E_0$, $q(r, x) = x$.) The subspace E_0 satisfies the hypotheses of the main theorem. Therefore there are a trivial dual topology τ_2 on $\mathbb{R} \times E_0$, weaker than the twisted sum topology; a τ_2 -neighborhood V of 0; and a constant C so that if $x \in E_0$, $(r, x) \in V$, and $||x|| < 1$, then $|||(r, x)||| < C$.

We can assume that V contains a τ_2 -neighborhood U of 0 of the form $B_\alpha + F_n$, where $F_n \subset E_0$ is as constructed as in the proof of the main theorem, and for any $\beta > 0$,

$$
B_{\beta} = \{(r, x) \in \mathbb{R} \times E_0 : |||(r, x)||| < \beta\}.
$$

Sets of the form $\overline{B_\beta} + q^{-1}(F_m)$, where

$$
\overline{B_\beta} = \{w \in \mathbb{R} \otimes_F E : |||w||| < \beta\},\
$$

obviously form a neighborhood base at the origin for a vector topology $\overline{\tau}_2$ on $\mathbb{R} \otimes_F E$, weaker than the twisted sum topology. The topology $\overline{\tau}_2$ is trivial dual since its restriction to the dense subspace $\mathbb{R} \times E_0$ is trivial dual.

Now choose $0 < \gamma < 1/2$ so that $\overline{B_{\gamma}} + \overline{B_{\gamma}} \subset \overline{B_{\alpha}}$, and assume that $w \in$ $\overline{B_{\gamma}}+q^{-1}(F_n)$ and $||q(w)|| < 1/2$. Choose $w_0 \in \mathbb{R} \times E_0$ so that $|||w-w_0||| < \gamma$. Then $||q(w)-q(w_0)|| < \gamma$, so $||q(w_0)|| < \gamma + 1/2 < 1$. Clearly, $w_0 \in \overline{B_\alpha} + q^{-1}(F_n)$, and so from our assumption, $|||w_0||| < C$. Now, $|||w||| < (\alpha/\gamma)(C+1)$, and the proof is complete.

The theorem and corollary apply to several spaces which are either not Kspaces or for which it is not known whether they are K -spaces:

THEOREM: For the following pairs of normed spaces E and quasi-linear maps F on E, the twisted sum topology on $X_F = \mathbb{R} \times E$ is the supremum of a nearly *convex topology and a trivial dual topology:*

- (a) E is any infinite-dimensional subspace of ℓ_1^0 (whether or not it is a K*space), F is the Ribe function Fo;*
- (b) *E is* the *linear span of the usual unit vector basis for the James space, under the James norm; F is any quasi-linear function on E;*
- (c) *E* is the span of the usual unit vector basis in $\ell_p(\ell_1^n)$, for $1 < p < \infty$ (this *is a reflexive non-K space); F will be described below.*

Proof: For (a), let $H = \{x \in E: \sum_i x_i = 0\}$. Note that if $x, y \in H$ and x and y have disjoint supports, $F_0(x + y) = F_0(x) + F_0(y)$. Since H has codimension at most 1 in E and E is infinite dimensional, there is a sequence of non-zero elements (x_i) in H satisfying sup (support x_i) \lt inf (support x_{i+1}) for all *i*.

As remarked above, F_0 is linear on span (x_i) , so if we define $T(x_i) = F(x_i)$, the linear function T certainly satisfies hypothesis (1) of the theorem. Therefore the theorem applies to E.

For (b) , it is known that the even unit vectors e_{2n} span a pre-Hilbert subspace of the James space (see [1]). The B-convexity of $\text{span}(e_{2n})$ and Theorems 2.6 of [2] and 2.5 of [3] imply that there is a linear map T on $span(e_{2n})$ such that $|T(x) - F(x)| \leq C ||x||$ for all x in span (e_{2n}) . Therefore the theorem applies.

(c) For each n let $(e_{i,n})$ be the usual unit vector basis of ℓ_1^n , and let E be the span of the $e_{i,n}$ in $\ell_p(\ell_1^n)$. Let (c_n) be any sequence in $\ell_q, \frac{1}{p} + \frac{1}{q} = 1$. Let F_0 be the Ribe function and define F on E by

$$
F((x_n))=\sum_n c_n F_0(x_n).
$$

We claim that F is quasi-linear. For this, if (x_n) and (y_n) are in E, the sequences ($||x_n||_1$) and ($||y_n||_1$) are ℓ_p sequences, and for each n,

$$
|c_nF_0(x_n+y_n)-c_nF_0(x_n)-c_nF_0(y_n)|\leq c_n(||x_n||_1+||y_n||_1).
$$

From Hölder's inequality,

$$
|F((x_n+y_n))-F((x_n))-F((y_n))|\leq||(c_n)||_q(||(x_n)||_p+||(x_n)||_p).
$$

Theorem 4.7 of $[2]$ gives that E is not a K-space. The F just defined proves this directly, for suppose there is a linear T on E with $|T(x) - F(x)| \leq C ||x||$ for all x in E. Then since $F(e_{i,n}) = 0$ for all i, n, $|T(e_{i,n})| \leq C$ for all i, n. But

$$
F\left(\frac{1}{n}\sum_{i=1}^n e_{i,n}\right) = -c_n \log n,
$$

a contradiction if we choose c_n so that $(c_n \log n)$ is unbounded.

Finally, our theorem applies in this situation. To show this, for each n pick a unit vector x_n in ℓ_1^n . The sequence (x_n) is equivalent to the usual basis of ℓ_p , which is B -convex; the results already mentioned imply that there is a linear T

on span(x_n) such that $|T(x) - F(x)| \leq C ||x||$ for all x in span(x_n). This finishes the proof. |

Note that, because of the separability, the corollary applies to the completions of the twisted sums in $(a)-(c)$ above.

References

- [1] R. C. James, *A non-reflexive Banach space isometric with its second conjugate* space, Proe. Natl. Aead. Sci. a7 (1951), 174-177.
- [2] N. J. Kalton, *The three space problem for locally bounded F-spaces,* Compositio Math. 37 (1978), 243-276.
- [3] N. J. Kalton and N. T. Peck, *Twisted sums of sequence spaces and the three-space problem,* Trans. Amer. Math. Soe. 255 (1979), 1-30.
- [4] N. J. Kalton and James W. Roberts, *Uniformly exhaustive submeasures and nearly additive* set *functions,* Trans. Amer. Math. Soc. 278 (1983), 803-816.
- [5] V. L. Klee, *Exotic topologies for linear spaces,* Proe. Symp. on Gen. Topology and its Relations to Modern Analysis and Algebra, Academic Press, New York, 1962, pp. 238-249.
- [6] J. Lindenstrauss and L. Tzafriri, *Classical Banach Spaces I,* Ergeb. der. Math. u. ihrer Grenzgeb., Springer-Verlag, Berlin, 1977, p. 92.
- [7] N. T. Peek and H. Porta, *Linear topologies which* are *suprema of exotic topologies,* Studia Math. 47 (1973), 63-73.
- [8] M. Ribe, *Examples* for *the non locally convex three space problem,* Proe. Arner. Math. Soe. 237 (1979), 351-355.
- [9] James W. Roberts, *A nonlocally convex F-space with the Hahn-Banach approximation property,* Springer Lecture Notes 604, Springer-Verlag, Berlin, 1977, pp. 76-81.