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ABSTRACT 

Let F be a quasi-linear map  on a separable normed space E, and assume 

that  F splits on an infinite-dimensional subspace of E. Then  the twisted 

sum topology on R ® F E  can be wri t ten as the sup remum of a nearly convex 

topology and a trivial dual topology. (This  partially answers a question of 

Klee.) The  result applies to the Ribe space and to J ames ' s  space. 

In [5], Klee asked whether every vector topology v on a real vector space X 

is the supremum of a nearly convex topology 7"1 and a trivial dual topology v2. 

Recall that a vector topology Vl on X is n e a r l y  convex  if for every x not in 

the vl-closure of {0} there is f in (X, vl)* with f(x) ~ 0; v2 is t r iv ia l  d u a l  if 

(X, v2)* = {0}. We do not require that Vl or 7"2 be Hausdorff, even if v itself 

is Hausdorff. The topology v is the s u p r e m u m  of vl and r2 if vl and v2 are 

weaker than v, and if for every r-neighborhood U of the origin 0 there are a 

vl-neighborhood V of 0 and a v2-neighborhood W of 0 such that U D V N W. 

In [5], Klee proved that the usual topology on ~p, 0 < p < 1, is not the 

supremum of a locally convex topology and a trivial dual topology; this and 

other examples make the question at the beginning of this paper a natural  one. 

Some related questions on suprema of linear topologies were studied in [7]. 

Given any vector topology v on X,  let K(v)  = A{f- l (0 ) :  f 6 (X,v)*) .  It 

is trivial to answer Klee's question affirmatively in the case that K(v)  is com- 

plemented. For in this case, K(v)  must be a trivial dual space in the relative 

topology; and if L is a complement to K ( r )  in X,  the relative topology on L is 
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nearly convex. Now simply let rl be the product of the trivial topology on K ( r )  

and the relative topology on L; and let 7"2 be the product of the relative topology 

on K ( v )  and the trivial topology on L. Then r = sup(z1, r2). 

So the interesting case is when K(v)  is uncomplemented. We study the problem 

when (X, r )  is the tw i s t ed  s u m  of a separable normed space and the real line. 

Recall that a real function F on a normed space E is quas i - l inea r  if 

(0) (i) F(rx )  = rF(x )  for all scalars r and all x in E; 

(ii) IF(x + y) - F (x )  - F(y)l  <_ c(llxll + Ilyll) for all x, y in E and some 

constant C. 

Now define the tw i s t ed  s u m  of the real line and E (with respect to F )  as the 

vector space XF = R x E equipped with quasi-norm I]1( r, x)]ll = ]r - r ( x ) l +  ]]x II. 

It is easy to verify that 

Ilt(r, + r2,x, + x2)ltl < ( c  + 1)[lll(r,,x,)JJl + 

The space E is said to be a K - s p a c e  if the subspace R x {0} is complemented 

in X F  for every quasi-linear map F on E. (This is a slight abuse of terminology; 

strictly speaking, it is the completion of E that is the K-space.) So we are 

interested in Klee's question for the non-K spaces. The only known non-K 

spaces are gl-like. The R i b e  f u n c t i o n  is defined on g0, the space of finitely 

supported elements of gt, by 

with the convention that 0gn0 = 0. Ribe [8] proved that F0 is quasi-linear on g0 

and used F0 to show that gl is not a K-space. Closely related functions were used 

by Kalton [2] and Roberts [9] to prove the same result. The reflexive space g2(g~) 

is not a K-space, and the B-convex spaces are K-spaces [2]. Kalton and Roberts 

[4] showed that co and goo are K-spaces. It is not known whether the James space 

is a K-space. We are studying Klee's problem for spaces E and quasi-linear maps 

F on E such that R x {0} is not complemented in XF. By Theorem 2.5 of [3], 

there is no linear map T on E such that IT(x) - r (x ) ]  < CHx][ for all x in E 

(i.e. F does not split on E). The corollary to our main theorem implies that 

none of the spaces above can be a counterexample for Klee's question, since the 

F concerned does split on an infinite-dimensional subspace. 

We now state our main result: 
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MAIN THEOREM: Let E be an blo-dimensional normed space. Assume F is a 

quasi-linear function on E for which there are a linearly independent sequence 

(xi) in E and a linear map T on span(xi) such that 

(1) IT(x) - F (x ) l  _< CIIxll for all x in span(x, )  a n d  s o m e  constant C. 

Then there are a trivial dual topology r2 on R x E, weaker than the quasi-norm 

topology, and a r2-neighborhood U of O such that i f ( r ,  x) E U and Ilxll _< 1, then 

Ill(r,x)lll < C for s o m e  c o n s t a n t  C .  

Before we prove the theorem, we set the framework for the construction with 

some auxiliary results. We begin with: 

Definition: Suppose (Gi) is a finite or infinite sequence of subsets of E,  and (hi) 

is a sequence of positive integers (of the same length as (G~)). The (n i ) - sum of 

(Gi) is the set of all finite sums 

Z = r l Z l  + r 2 z 2  + r 3 z 3  + ' ' -  

where [ril < 1 for all i and z , , . . .  ,Zn, are in G,, Znl+l, . . .  ,Z,~+n2 are in G2, 

zm+n2+l , . . .  ,Zn~+n2+,3 are in G3, etc. Note that if Irl < 1, rz is also in the 

(ni)-sum. II 

LEMMA 1: Let X be a vector space and let (U,) be a neighborhood base at 0 

for a pseudo-metrizable vector topology on X ,  chosen so that U,,+I + U,,+I C [.7, 

for MI n and [ -1 ,  1]Un C U. for all n. Let (F , )  be a sequence of subsets of 

X ,  chosen so that [ -1 ,  1]Fn C Fn and Fn+l + Fn+l C Fn, for all n. Then the 

sequence (U, + F , )  is a neighborhood base at 0 for a pseudo-metrizable vector 

topology on X which is weaker than the original topology. 

Proof." Immediate. | 

In the next lemma, we specify Fn more closely. 

LEMMA 2: Let X and (Un) be as in Lemma 1. Let (Gn) be a sequence of subsets 

of X .  Define subsets F ,  of X as follows: for each n in N,  F ,  is the (2i-n)-sum 

of the Gi's for i >_ n. Then (Fn) satisfies the hypotheses of Lemma 1. 

Proof." [ -1 ,  1]F, C F ,  as remarked already. For a typical sum in F,,+I + F,,+I, 

at most 2.2 i - ( "+0  = 2 i-n of the zi's are in Gi for i > n + l ,  so Fn+l +Fn+l C Fn. 

| 
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Remark: Note that there is an apriori bound on the number of elements of Gi 

appearing in a sum in F , ,  for any n: the bound is 2i-1; we use the looser bound 

2 i . II 

In our construction, (U,) is a neighborhood base at 0 for the twisted sum 

topology. The Gi's of Lemma 2 will be chosen so that ( U , + F , )  is a neighborhood 

base at 0 for a trivial dual topology 7"2; they will also have to be chosen so that 

r is the supremum of rl and v2. The next lemma identifies the topology rl: 

LEMMA 3: Let F be a quasi-linear map on a normed space E and let XF  = 

R x E with the quasi-norm ][](r,x)]]l = ]r - F(x)[ + ][x][. Assume R × {0} is 

not complemented in XF.  Then the strongest nearly convex topology on R × E 

which is weaker than the quasi-norm topology has a neighborhood base at 0 of 

sets or the  form {(r,x): Ilxl[ < ,} .  

Proof: Sets of the above type are a neighborhood base at 0 for a nearly convex 

topology weaker than r ,  the quasi-norm topology. The closure of {0} for this 

weaker topology is R x {0}; and if (r ,~) is in XF and z • 0, there is f in E* 

with f (x )  # 0. Then f0r ( r ,  x)) • 0, where ~r is the quotient map of XF onto E. 

Now suppose u is a nearly convex topology on R x E, weaker than the quasi- 

norm topology. Since R x {0} = K ( r )  is not complemented, the u-closure of 

{0} must contain R x {0}. Let U be u-open containing 0. Choose V u-open 

containing 0, with V + V C U. Choose e > 0 so that if Ill(r,x)lll < ~, then 

(r, E v .  
Now, I[I(F(z),x)III = llxll, soi l  llxll < e, then ( r ( x ) , x )  E V. Also, ( r - F ( x ) , 0 )  

is in V since it is in the u-closure of 0, and so (r, x) is in U. II 

Notation: Let Z be a Banach space with a basis (vi). Let (v*) be the coordinate 

functionals on Z. For n a positive integer and z in Z, set x [[1,,]= ~in___l v*(x)vi,  

and x [(,,oo)= Y]~ ,+ I  v*(x)vi. Say that z is to  t h e  r ight  o f n  if v * ( x ) =  0 for 

i<_n. | 

We need two more preliminary results before proving our main theorem: 

LEMMA 4: Let Z be a Banach space with a monotone basis (vi), let K be a 

compact subset of Z, and let e > O. Then there is n so that i f  y is to the right of 

. and • e K ,  then Ilxll < + + 

Proof." Choose n so that ][x ](,,oo) [[ < e for every z in K. Now if y is to the right 

of n, then [Ix [[1,-] [[ = [[(x + y) [[1,-] [[ -< [[(x + y)][, since the basis is monotone, 
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so I1=11 < I1= + yll + ~- i 

LEMMA 5: Let  Yi, 1 < i < k, be linearly independent  e lements  o f  a normed  space 
k E. De~ne yk+l = - ~ i=1 Yi, and let ~ > O. Set  zi = myi ,  1 < i < k + l ,  for some 

m > 0. Then  we can choose m so large that the foIlowing condition is satisfied: 
_ X - ' k + l  ira~ most k or the ,-,'s are non-~ero, ~.di~ l l  E ~ J  1,,z,II < 3, then L.,,i----1 I,',1 < ,7. 

Proof'. Choose M > 0 so that  E L 1  b,I < MII k ~-]i=1 aiyi[[ for all k-tuples (ai) .  
~--,k+l 

Now suppose I[ z_,i=l rizi[[ < 3, with at most k r / s  non-zero. If rk+l = 0, then 

k 
E Iri[ -< 3M - - < r  I 

m i=1 

for m > 3 M / r  I. 

If rk+l ~ 0, then some other ri is 0, r l ,  say; now, 

k+l k 

II ,,z, II = I I - m , , + , y ,  + < 3. 
i=l i=2 

Therefore 
k+l 3 M  

]rk+ll + E l r i -  rk+l] < - - ,  
m i=2 

SO 
k+l k+l 

E ]ri] ~ Irk+ll 31- E Iri -- rk+l]-~- ]¢]rk+ll 
i=2 i=2 

3(k + I )M 
< <7/ 

7// 

for m > 3(k + 1)M/~. I 

Proof  of  Main Theorem: We will construct inductively the sets G ,  used in 

Lemma 2. That  lemma will give us the sets F ,  and then Lemma 1 will provide 

the topology. 

We may assume that  for zi and T in the theorem, T ( x i )  = 0 for each i. This 

is possible since for each i, there is a scalar ai so that  T(x2i-~ + 0¢i:~2i) = 0; now 

the sequence x~ = x2i-1 + ~ix2i also satisfies condition (1) of the Theorem. 

We can regard E as a subspace of the Banach space Z = C[0, 1], which has a 

monotone basis. Any positive scalar multiple of the quasi-norm yields the same 

topology as the quasi-norm, so we can and do assume that  the constant C in 0(ii) 

above is 1. This can be done by multiplying F by a suitable positive constant. 
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Finally, we use II II to refer to the norm on Z and on E.  We only calculate 

norms of elements of E,  but we do use the monotonicity of (vi) in Z. 

Now we begin the construction of (Gi). 

Choose 0 < cn < 2 -("+3) (and thus ~,,oo__, c,  < ¼). Let (dj) be any sequence 

whose linear span is E,  and let (e~) be an indexing of (dj) such that each dj 

occurs infinitely often in (el). We can assume that IId, II < 1 and that IF(d,)l < 1 

for each j ,  by multiplying dj by a positive constant. 

Assume that finite sets Go, G1 , . . . ,  G , -1  have been constructed, with Go = 

{0}, satisfying the following conditions: 

(2) for each 1 < i < n - 1, Gi is a finite set (wi,j : 1 < j < 2i+1), with 

wi,j = ei + mixt(i,j), j <_ 2 2, 

2 i 

Wi,2i+l  = e i  - -  ~ " r n i x t ( i , j ) ;  

j = l  

here, (xi) is the sequence in the statement of the theorem. 
~ . .  ~--~2i+1 

(3) Set ,.,,j = w i . j -  ei. Then if II "¢-'i,Jll < 3 with at most 2 i rj's 
X--,2i+I 

non-zero, ~ j = l  IvJl < ci. 

To define G , ,  let I t "  be the (2i)-sum of Gi for i < n - 1, (so K~ = {0}) and let 

Kn = K~ + [-2n,  2hie,. Then K,, is a compact subset of E C Z. By Lemma 4, 

there is an integer s ,  such that if y is to the right of s ,  then Itxll < IIx + yll + c,, 

for all x in K , .  By the linear independence of the sequence (xi), we can choose 

xt(, ,~), . . .  ,xt(, .2-),  all to the right of s , ,  with £(n , j )  < e (n , j ' )  i f j  < j ' .  For 
2 n 

ease of notation, put Xn,i = X t ( n , i ) ,  1 < i < 2", and put x , , 2 - + f =  - ~ i=1  x,, i .  

By Lemma 5, we can choose rn,  so large that if 

2 n + l  

II < 3, 
j = l  

with at most 2" of the rn,j non-zero, then 

(4) 
2 n + l  

j = l  

Finally, for 1 < i < 2n + 1, put 

~ 'n , i  = e n  q- m n X n , i  
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and let 

Gn = (w.,i),  1< i < 2 n + l. 

~2"+1 Note that since ~-..i=1 x., i  = 0, e.  E coG.. (We denote the convex hull of A by 

coA.) This finishes the construction of (Gi). 

Now let (F.)  be the subsets of E used in Lemma 1: F .  is the (2 i -")  sum of 

(Gi) for i > n. Let (U.) be a neighborhood base at 0 for the quasi-norm topology 

on R x E, with U.+I + U.+~ C U. and [-1, 1]U. C U., for all n; also assume 

that IIIwlll < 1 if w E U1. Let ~'2 be the topology yielded by Lemma 1. 

We claim that rz is trivial dual. To see this, note that for m >_ n, em E 

CO(Win,i) C coFn C co(F. + U.); since each dj occurs infinitely often in the 

sequence (e,.), K(v2) contains every dj and therefore contains {0} × E. Also, 

(1,0) e coU. C co(U. + F.)  for every n, so g(r2)  contains R x {0). This proves 

the claim. 

Now suppose that 
n 2i+1 

x = Z Z ri,j(ei-k m i x i j )  
i= l  j = l  

is in F1 and that Hxll < 1. We will first prove that IF(x)l < 9. 

Toward that end: since the x . , j  are to the right of s . ,  the construction of Gn 

implies that 

n--1 21+1 2n+l  

(5) II Z ,,,j(e, + ".,je.ll < 1 + 
i=1 j=l j=l 

from which, since Ilxll < 1, 

2"+1 

(6) [j ~ r. , im.x.,i[[ < 2 + c. < 3. 
j = l  

Now from (4) and (6), we have 

(7) 
2"+1 

I . . . i l  < c . ;  
j = l  

combining this with (5), we have 

(8) 
n--1 21+1 

i----l j --I  
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For the induction step, assume that for some ~, 

(9) 
t 21+1 

I I E  E ri,j(e' + mixi,J)ll < 1 + 2cn + " - +  2ct+1. 
i= l  j = l  

Since the x t j  are to the right of st, the construction of Gt implies that 

(lO) 
t--1 21+1 2 t+ l  

II ~ ~ ~,,~(~, + m,~,,i) + ~ r*,i~,ll < 1+ 2cn + .  + 2C,+ 1 + Ct, 
i=1 j = l  j = l  

from which 

(11) 
2t+l 

II ~ ~t,~m,~,,~ll < 2 + 4cn + .  + 4¢£-{-1 JI- C1 < 3. 
j=l  

Now from (4) and (11), we have 

2z-{-i 

(12) ~ Irt,il < ct; 
j----1 

combining this with (10), we obtain 

t--1 21+1 

(13) II Z Z r',J(~' + m,x,,j)ll < 1 + 2c. + . . .  + 2c~, 
i=l j=l  

recalling that [[ei[[ _< 1. This finishes the induction step. 

The above argument has yielded that 

2i+1 

(14) II ~ r,.,~,ll < c, 

j----1 

for each i; from this and IIxI[ < 1, we have 

n 21+1 oo 

(15) ]1E E ri,jmix',Jll < 1 + E cn < 2. 
i=1 j = l  n=l 

From (15) and (1), recalling T(xij) = O, 

) ri,jmixi,j [ 

k ~=l i=1 
<2.  
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To estimate 

F 

2i+1 x 

i=1 j=a / 

recall that IF(e,) l  _ 1 for each i, so 

Therefore 

i F r,,je, I_< 2-'+ ill ~ T',J~'II 
i=1 \ j = l  /=1 /=1 j = l  

n 

< l + E i . 2 - ~  < 4  
i----1 

(using ]F(E u,)] < E IF(u')] + E i I N , H )  • Finally, 

n 2i-{-I n 2~+i 

jF(~)i _< 2 + 4 + II ~ ~ r,,je, II + II 5: ~ ',,jm,x,,,ll 
i=1 j = l  i=1 j = l  

< 2 + 4 + 1 + 2 = 9 .  

To complete the proof of the theorem, suppose (r, x) E U1 + F1 and Ilxll < 1. 

Write (r ,x)  = ( r ,y)+(0,  z), with (r ,y) e Va andz  E F1. Then Ir-F(y)l+lly][ <_ 1; 

from this and I[zll < 1 follows Ilzll < 2. Now since z E F1, the preceding paragraph 

implies IF(z)l < 18. At last, 

Ir - r ( x ) l  <_ Ir - F(y)l + IF(y) - r (x ) l  

_< 1 + I f (y)  - r (x ) l  

<_ 1 + IF(z)[ + IIzll + IIxll 

< 22, 

so ]ll(r,x)l[I < 23. The proof is complete. | 

COROLLARY: Let E be a separable normed space and let Eo be an R0-dimensional 

subspace of E which is dense in E. Assume that there is a quasi-linear map F 

on Eo which splits on an int~nite-dimensionM subspace of Eo. Then the twisted 
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sum topology on R ~ F E is the supremum of a trivial dual topology and a nearly 

exotic topology. 

Proof: Let q denote the quotient map of R ®F /~ onto /~, where /~ is the 

completion of E. (For x • Eo, q(r, x) = x.) The subspace E0 satisfies the 

hypotheses of the main theorem. Therefore there are a trivial dual topology r2 

on R x E0, weaker than the twisted sum topology; a r2-neighborhood V of 0; and 

a constant C so that if x • E0,(r ,x)  • V, and Hz][ < 1, then [][(r,x)H [ < C. 

We can assume that V contains a r2-neighborhood U of 0 of the form Ba + Fn, 

where Fn C E0 is as constructed as in the proof of the main theorem, and for 

any/3 > 0 ,  

B~ = {(r ,x)  • R x Z0:  [[l(r,x)[ll </~}. 

Sets of the form ~ + q-l(Fm),  where 

= (w • R ® r  E:  II1 111 

obviously form a neighborhood base at the origin for a vector topology Y2 on 

R ~ f  E, weaker than the twisted sum topology. The topology Y2 is trivial dual 

since its restriction to the dense subspace R x E0 is trivial dual. 

Now choose 0 < 7 < 1/2 so that B. r + B 7 C B~, and assume that w E 

B--'~+ q- l (Fn)  and [[q(w)][ < 1/2. Choose w0 • R x E0 so that [[Iw - w0[[[ < 7. 

Then IIq(w)-q(wo)ll < 7, so IIq(wo)H < 0 '+1/2 < 1. Clearly, w0 • B-~+q-l(Fn),  

and so from our assumption, ]l]w0H[ < C. Now, ]Hw]H < ( a / 7 ) ( c  + 1), and the 

proof is complete. II 

The theorem and corollary apply to several spaces which are either not K- 

spaces or for which it is not known whether they are K-spaces: 

THEOREM: For the following pa/rs of normed spaces E and quasi-linear maps F 

on E, the twisted sum topology on XF = R x E is the supremum of a nearly 

convex topology and a trivial dual topology: 

(a) E is any infinite-dimensional subspace of e ° (whether or not it is a K-  

space), F is the Ribe function Fo; 

(b) E is the linear span of the usual unit vector basis for the James space, 

under the James norm; F is any quasi-linear function on E; 

(c) E is the span of the usual unit vector basis in ~p(£~), for 1 < p < oo (this 

is a reflexive non-K space); F will be described below. 
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Proof: For (a), let H = {x E E: E i  Xi ---- 0}. Note that if x, y E H and x and 

y have disjoint supports, Fo(z + y) = Fo(z) + Fo(y). Since H has codimension 

at most 1 in E and E is infinite dimensional, there is a sequence of non-zero 

elements (xi) in H satisfying sup (support xi) < inf (support Xi+l) for all i. 

As remarked above, F0 is linear on span(xi), so if we define T(zi)  = F(xi),  the 

linear function T certainly satisfies hypothesis (1) of the theorem. Therefore the 

theorem applies to E. 

For (b), it is known that the even unit vectors e2n span a pre-Hilbert subspace 

of the James space (see [1]). The B-convexity of span(e2,,) and Theorems 2.6 

of [2] and 2.5 of [3] imply that there is a linear map T on span(e2n) such that 

IT(x) - F(x)I _< CIIxll for all x in span(e2,~). Therefore the theorem applies. 

(c) For each n let (ei,,,) be the usual unit vector basis of g[, and let E be the 

span of the ei,n in ~p(g~'). Let (ca) be any sequence in ~q, ~ + ~ = 1. Let F0 be 

the Ribe function and define F on E by 

n 

We claim that F is quasi-linear. For this, if (xn) and (y.)  are in E, the 

sequences (l lx. l l l)  and  (IlY-II') are sequences, and for each n, 

Ic.Fo(xn -4-y.)- c.Fo(x.)- c.(llx.ll  + IlY.lll). 

From Hhlder's inequality, 

IF((xn + y . ) )  - F((xn)) - F((yn))l _< II(c.)llq(ll(x.)llp + II(xn)llp)- 

Theorem 4.7 of [2] gives that E is not a K-space. The F just defined proves 

this directly, for suppose there is a linear T on E with IT(x) - F(x)] <_ CIIx]I for 

all x in E. Then since F(ei,n) = 0 for all i, n, IT(ei,n)] _< C for all i, n. But 

a contradiction if we choose c,, so that (c,, log n) is unbounded. 

Finally, our theorem applies in this situation. To show this, for each n pick a 

unit vector z,, in ~'. The sequence (x . )  is equivalent to the usual basis of ~r, 

which is B-convex; the results already mentioned imply that there is a linear T 
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on span(xn) such that IT(x) - F(x)l  <_ Cllxl[ for all x in span(x,,). This finishes 

the proof. | 

Note that,  because of the separability, the corollary applies to the completions 

of the twisted sums in (a)-(c) above. 
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