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ABSTRACT
Let F be a quasi-linear map on a separable normed space E, and assume
that F splits on an infinite-dimensional subspace of E. Then the twisted
sum topology on RQ r E can be written as the supremum of a nearly convex
topology and a trivial dual topology. (This partially answers a question of
Klee.) The result applies to the Ribe space and to James’s space.

In [5], Klee asked whether every vector topology 7 on a real vector space X
is the supremum of a nearly convex topology 7 and a trivial dual topology 2.
Recall that a vector topology 7 on X is nearly convex if for every z not in
the 7-closure of {0} there is f in (X, r)* with f(z) # 0; 2 is trivial dual if
(X,m2)* = {0}. We do not require that 7; or 72 be Hausdorff, even if 7 itself
is Hausdorff. The topology 7 is the supremum of r; and 75 if 7, and 7, are
weaker than 7, and if for every r-neighborhood U of the origin 0 there are a
71-neighborhood V of 0 and a 7,-neighborhood W of 0 such that U DV NW.

In [5], Klee proved that the usual topology on £,, 0 < p < 1, is not the
supremum of a locally convex topology and a trivial dual topology; this and
other examples make the question at the beginning of this paper a natural one.
Some related questions on suprema of linear topologies were studied in {7].

Given any vector topology 7 on X, let K(r) = N{f~}(0): f € (X,7)*}. It
is trivial to answer Klee’s question affirmatively in the case that K(7) is com-
plemented. For in this case, K(7) must be a trivial dual space in the relative

topology; and if L is a complement to K(7) in X, the relative topology on L is
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nearly convex. Now simply let 7 be the product of the trivial topology on K(r)
and the relative topology on L; and let m; be the product of the relative topology
on K(7) and the trivial topology on L. Then 7 = sup(r, 72).

So the interesting case is when K(7) is uncomplemented. We study the problem
when (X, 7) is the twisted sum of a separable normed space and the real line.

Recall that a real function F on a normed space E is quasi-linear if

(0) (i) F(rz) =rF(z) for all scalars r and all z in E;
(il) |F(z +y) - F(z) - F(y)l < C(llzll +llyll) for all z, y in E and some
constant C.

Now define the twisted sum of the real line and E (with respect to F) as the
vector space Xr = R x E equipped with quasi-norm |||(r, z)||| = [r — F(z)]+]z]|.
It is easy to verify that

(s + r2, 21 + 22) ] <(C+ D{IIIre, 2l + Nl(r20 22)1)-

The space F is said to be a K-space if the subspace R x {0} is complemented
in Xr for every quasi-linear map F on E. (This is a slight abuse of terminology;
strictly speaking, it is the completion of E that is the K-space.) So we are
interested in Klee’s question for the non-K spaces. The only known non-K
spaces are £,-like. The Ribe function is defined on £, the space of finitely
supported elements of £, by

Fy(z) =) witnlzi| - (Z :c;) fn) Z zi|

i

with the convention that 0¢n0 = 0. Ribe [8] proved that Fp is quasi-linear on £
and used Fy to show that ¢; is not a K-space. Closely related functions were used
by Kalton [2] and Roberts [9] to prove the same result. The reflexive space £5(¢F')
is not a K-space, and the B-convex spaces are K-spaces [2]. Kalton and Roberts
[4] showed that ¢ and £ are K-spaces. It is not known whether the James space
is a K-space. We are studying Klee’s problem for spaces E and quasi-linear maps
F on E such that R x {0} is not complemented in Xz. By Theorem 2.5 of (3],
there is no linear map T on E such that |T(z) — F(z)| < Cljz|| for all z in E
(i.e. F does not split on E). The corollary to our main theorem implies that
none of the spaces above can be a counterexample for Klee’s question, since the
F concerned does split on an infinite-dimensional subspace.

We now state our main result:
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MAIN THEOREM: Let E be an Ro-dimensional normed space. Assume F is a
quasi-linear function on E for which there are a linearly independent sequence
(z;) in E and a linear map T on span(z;) such that
(1) |T(z) — F(z)| £ C||z|| for all z in span(z;) and some constant C.
Then there are a trivial dual topology T2 on R x E, weaker than the quasi-norm
topology, and a 7o-neighborhood U of 0 such that if (r,z) € U and ||z]| < 1, then
[I(r,2)||| < C for some constant C.

Before we prove the theorem, we set the framework for the construction with

some auxiliary results. We begin with:

Definition: Suppose (G;) is a finite or infinite sequence of subsets of E, and (n;)
is a sequence of positive integers (of the same length as (G;)). The (n;)-sum of
(G;) is the set of all finite sums

z=rz1 +1222+ 13234+

where |r;| <1 for all : and 21,... ,2,, arein G1, 2p,41,... , Zny4n, are in Gz,
Zny4+ngtly--- s Zny+ng4ns ar€ in Gi, etc. Note that if |r| < 1, rz is also in the
(n;)-sum. 1

LEMMA 1: Let X be a vector space and let (Uy) be a neighborhood base at 0
for a pseudo-metrizable vector topology on X, chosen so that Upy1+Upyr CUp
for all n and [-1,1)U, C U, for all n. Let (F,) be a sequence of subsets of
X, chosen so that [-1,1]F, C F, and Fy41 + Fny1 C Fy, for all n. Then the
sequence (U, + F) is a neighborhood base at 0 for a pseudo-metrizable vector

topology on X which is weaker than the original topology.
Proof: Immediate. [
In the next lemma, we specify F, more closely.

LEMMA 2: Let X and (U,) be as in Lemma 1. Let (G) be a sequence of subsets
of X. Define subsets F, of X as follows: for each n in N, F, is the (2'~")-sum
of the G;’s for i > n. Then (F,) satisfies the hypotheses of Lemma 1.

Proof: [~1,1]F, C F,, as remarked already. For a typical sum in Fy41 + Foy1,
at most 2-21~("*1) = 2i—7 of the 2;’s are in G; for i > n+1, 50 Fyp1+Fog1 C Fa.
1
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Remark: Note that there is an apriori bound on the number of elements of G;

appearing in a sum in F,, for any n: the bound is 2'~!; we use the looser bound
2t |

In our construction, (U,) is a neighborhood base at 0 for the twisted sum
topology. The G;’s of Lemma 2 will be chosen so that (U,+ F},) is a neighborhood
base at 0 for a trivial dual topology 77; they will also have to be chosen so that

7 is the supremum of 71 and 75. The next lemma identifies the topology 7;:

LEMMA 3: Let F be a quasi-linear map on a normed space E and let Xp =
R x E with the quasi-norm |||(r,z)||| = |r — F(z)| + |lz||. Assume R x {0} is
not complemented in Xr. Then the strongest nearly convex topology on R x E
which is weaker than the quasi-norm topology has a neighborhood base at 0 of
sets of the form {(r,z): ||z|| < n}.

Proof: Sets of the above type are a neighborhood base at 0 for a nearly convex
topology weaker than 7, the quasi-norm topology. The closure of {0} for this
weaker topology is R x {0}; and if (r,z) is in Xp and z # 0, there is f in E*
with f(z) # 0. Then f(n(r,z)) # 0, where 7 is the quotient map of X onto E.

Now suppose v is a nearly convex topology on R x E, weaker than the quasi-
norm topology. Since R x {0} = K(7) is not complemented, the v-closure of
{0} must contain R x {0}. Let U be v-open containing 0. Choose V' v-open
containing 0, with V +V C U. Choose € > 0 so that if |||(r,z)||| < €, then
(r,z) €V.

Now, |||(F(z),z)|i] = |z||, soif ||z|| < ¢, then (F(z),z) € V. Also, (r—F(z),0)

is in V since it is in the v-closure of 0, and so (r,z) is in U. |

Notation: Let Z be a Banach space with a basis (v;). Let (v}) be the coordinate
functionals on Z. For n a positive integer and z in Z, set = |y 5= Y1, vi(2)vs,
and « |(n,00)= Y ions1 Vi (€)vi. Say that x is to the right of n if v}(z) =0 for
: <n. 1

We need two more preliminary results before proving our main theorem:

LEMMA 4: Let Z be a Banach space with a monotone basis (v;), let K be a
compact subset of Z, and let e > 0. Then there is n so that if y is to the right of
n and z € K, then ||z| < ||z + y|| + ¢

Proof: Choose n so that || |(n,00) || < € for every z in K. Now if y is to the right
of n, then ||z |1,0] || = [[(z +¥) |t1,#) I| £ (= + y)|l, since the basis is monotone,
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sollz]| <Jlz+yll+e W

LEMMA 5: Lety;, 1 <1 <k, be linearly independent elements of a normed space
E. Define yp41 = — Zf:] yi, and let n > 0. Set z; = my;, 1 <1 < k+1, for some
m > 0. Then we can choose m so large that the following condition is satisfied:
if at most k of the r;’s are non-zero, and if ” Zf:ll rizi|| < 3, then Zf:ll |ril < 7.
Proof: Choose M > 0 so that 25;1 Jai] < M|| Z:;l a,-y,-” for all k-tuples (a;).

Now suppose || Zf:ll r,-z,-” < 3, with at most k r;’s non-zero. If rpyq = 0, then

k

M
2l h <
=1

for m > 3M /7.
If ri41 # 0, then some other r; is 0, ry, say; now,
E+1 k
” E r,-z,-” = ” —Mmre41 + Zm(ri - Tk+1)yi|| <3.
i=1 i=2
Therefore )
+1
M
Iresa] + Z Iri =] < ——,
=2
so
k+1 k+1
Yolrl Slresal + ) Iri = ria] + klreea]
=2 =2
3(k+1)M
<2 <y
m

for m > 3(k +1)M/n. |

Proof of Main Theorem: We will construct inductively the sets G, used in
Lemma 2. That lemma will give us the sets F,, and then Lemma 1 will provide
the topology.

We may assume that for z; and T in the theorem, T(z;) = 0 for each ¢. This
is possible since for each 1, there is a scalar a; so that T(z;_1 + aiz9:) = 0; now
the sequence z = z2,_; + a;z3; also satisfies condition (1) of the Theorem.

We can regard E as a subspace of the Banach space Z = C[0,1], which has a
monotone basis. Any positive scalar multiple of the quasi-norm yields the same
topology as the quasi-norm, so we can and do assume that the constant C' in 0(ii)

above is 1. This can be done by multiplying F by a suitable positive constant.
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Finally, we use | || to refer to the norm on Z and on E. We only calculate
norms of elements of E, but we do use the monotonicity of (v;) in Z.

Now we begin the construction of (G;).

Choose 0 < ¢, < 27("*3) (and thus 3", ¢, < 1). Let (d;) be any sequence
whose linear span is E, and let (e;) be an indexing of (d;) such that each d;
occurs infinitely often in (e;). We can assume that ||d;|| < 1 and that |F(d;)| <1
for each j, by multiplying d; by a positive constant.

Assume that finite sets Go, G1,...,G,_1 have been constructed, with Gy =

{0}, satisfying the following conditions:
(2) for each 1 < i <n—1, G;is a finite set (w; ;:1 < j <2*1) with

wij = e+ mizig), J§ <2
25
Wiy = € — Z MiTe(i,5)5
j=1
here, (z;) is the sequence in the statement of the theorem.
(3) Set zi; = wi; — e;. Then if || Ef:] rjzij|| < 3 with at most 2i r;’s
non-zero, Ef:;x Irjl < e
To define G, let K, be the (2¢)-sum of G; for i < n—1, (so K} = {0}) and let
K, = K! +[-2",2"]e,. Then K, is a compact subset of E C Z. By Lemma 4,
there is an integer s, such that if y is to the right of s, then ||z|| < ||z + y|| + ¢
for all z in K,.. By the linear independence of the sequence (z;), we can choose
Ze(n,1)--- >Te(n,2n), all to the right of s, with £(n,7) < €(n,5") if j < j'. For
ease of notation, put z,; = Ty(n iy, 1 <7< 2%, and put zp,2n47= — 23;1 Zni
By Lemma 5, we can choose m,, so large that if
2" +1

“ Z r",jmnxn,j” <3,
j=1

with at most 2" of the r,, ; non-zero, then

2" +1

(4) Y Il < .
j=1

Finally, for 1 <: < 2" 41, put

Wp,i = €n + Mply i
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and let
Gn=(wn;), 1<i<2"+1.

Note that since 212:1” Tni =0, €5 € coG,. (We denote the convex hull of A by
coA.) This finishes the construction of (G;).

Now let (F,) be the subsets of E used in Lemma 1: F, is the (2'"") sum of
(G;) for ¢ > n. Let (U,) be a neighborhood base at 0 for the quasi-norm topology
on R x E, with Upy1 + Unt1 C U, and [-1,1)U, C U, for all n; also assume
that |||w||| < 1 if w € Uy. Let 7, be the topology yielded by Lemma 1.

We claim that 7, is trivial dual. To see this, note that for m > n, e, €
co(Wm,i) C coF, C co(F, + U,); since each d; occurs infinitely often in the
sequence (e,), K(72) contains every d; and therefore contains {0} x E. Also,
(1,0) € coU, C co(Uyn + Fy) for every n, so K(73) contains R x {0}. This proves
the claim.

Now suppose that

n 241

z=3 > riiei+mizi;)

=1 ;=1
is in Fy and that ||z|| < 1. We will first prove that |F(z)] < 9.
Toward that end: since the z, ; are to the right of s,, the construction of G,

implies that

n-12'+1 2"+1

(5) ” Z Z ri,j(ei + mizi ) + Z r,.,je,,ll <l+ep
j=1

i=1 j=1
from which, since ||z|| < 1,
2”41

(6) D" raimazn,l| <2+ ca <3.

i=1
Now from (4) and (6), we have

2"+1

™ 3 Irsl < o

combining this with (5), we have

n-12"41

(8) ” Z Z rij(ei + mixi,j)” <14 2¢,.

i=1 j=1
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For the induction step, assume that for some ¢,

¢ 241
9 “Z ZT,',,-(eg+m,~z.-,j)|| <142+ + 2o

i=1 j=1

Since the z, j are to the right of s¢, the construction of G¢ implies that

£-12'41 2t 41
(10) “Z ZT,](C,-{-m .’I),,])-{— Z 7‘1]6(“ <142¢c,+ -+ 2cp41 + o,
=1 j=1
from which
241
(11) Y rejmeze ;|| <2+4cn+- + 4o + e < 3.
j=1

Now from (4) and (11), we have

241

(12) Y Iresl < e
i=1

combining this with (10), we obtain

-12°41

(13) “ z Z rij{ei +mi 5'31,1)“ <14 2¢c,+ -+ 2¢,

i=1 j=1

recalling that |le;]| < 1. This finishes the induction step.
The above argument has yielded that

241

(14) “ Z T‘,',je,‘“ < ¢
=1

for each ¢; from this and |jz]| < 1, we have

n 241

(15) ”ZZr,,mx,,,“<1+ch<2

i=1 j=1

From (15) and (1), recalling T(z; ;) = 0,

n 2'41
|F ZZTUmx,,)|<2

i=1 j=1
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i=1 j=1

To estimate

recall that |F(e;)| <1 for each i, so

2i41

Z Ti,j€i | < 271,
1=1

Therefore

=1 =1

(S ()) <5t TS e

<1+Zi-2-"<4

i=1

(using |F(3 wi)| < X IF(ui)l + Liflusl). Finally,

n 2°41 n 2'41
IF@I<2+4+ 130 Y rigel + 1D D rijmazis
i=1 j=1 =1 j=1

<2+4+142=09.

To complete the proof of the theorem, suppose (r,z) € Uy + Fy and ||z|| < 1.
Write (r,z) = (r,y)+(0, 2), with (r,y) € U; and z € Fy. Then |r—F(y)|+||y|| £ 1;
from this and ||z|| < 1follows ||z|| < 2. Now since z € Fj, the preceding paragraph
implies |F(z)| < 18. At last,

Ir — F(z)] < |r — F(y)| + |F(y) ~ F(c)|
<1+|F(y) - F(z)]
S1+[EE)] + =] + =]
<22,

so |||(r,z)|[| < 23. The proof is complete. 1

COROLLARY: Let E be a separable normed space and let Ey be an Ry-dimensional
subspace of E which is dense in E. Assume that there is a quasi-linear map F

on Eq which splits on an infinite-dimensional subspace of Ey. Then the twisted
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sum topology on R®p E is the supremum of a trivial dual topology and a nearly
exotic topology.

Proof: Let ¢ denote the quotient map of R @ E onto E, where E is the
completion of E. (For £ € Eg,q(r,z) = z.) The subspace E; satisfies the
hypotheses of the main theorem. Therefore there are a trivial dual topology 7
on R x Ey, weaker than the twisted sum topology; a 72-neighborhood V of 0; and
a constant C so that if z € Ey,(r,z) € V, and ||z|| < 1, then [||(r,z)|]| < C.

We can assume that V contains a 7,-neighborhood U of 0 of the form B, + Fy,,
where F,, C E; is as constructed as in the proof of the main theorem, and for
any 8 >0,

Bg = {(r,z) e Rx Ey : [l|(r, 2)lll < B}.

Sets of the form Bg + ¢~!(Fm), where
By ={weR®F E: |||l < 8},

obviously form a neighborhood base at the origin for a vector topology 72 on
R ®F E, weaker than the twisted sum topology. The topology 7, is trivial dual
since its restriction to the dense subspace R x Ey is trivial dual.

Now choose 0 < 5 < 1/2 so that B, + B, C Ba, and assume that w €
B, + ¢~!(F») and ||g(w)]| < 1/2. Choose wy € R x Ey so that ||{w — wol] < v.
Then |lg(w) — g(wo )l < 7, s0 [lg(wo)l| < ¥+1/2 < 1. Clearly, wo € Ba+q(Fn),
and so from our assumption, |||we]]| < C. Now, |||w||| < (a/¥)(C + 1), and the

proof is complete. |

The theorem and corollary apply to several spaces which are either not K-

spaces or for which it is not known whether they are K-spaces:

THEOREM: For the following pairs of normed spaces E and quasi-linear maps F'
on E, the twisted sum topology on Xr = R x E is the supremum of a nearly

convex topology and a trivial dual topology:

(a) E is any infinite-dimensional subspace of £ (whether or not it is a K-
space), F is the Ribe function Fy;

(b) E is the linear span of the usual unit vector basis for the James space,
under the James norm; F is any quasi-linear function on E;

(c) E is the span of the usual unit vector basis in £,(£}), for 1 < p < oo (this

is a reflexive non-K space); F' will be described below.
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Proof: For (a), let H = {z € E: ), z; = 0}. Note that if z, y € H and z and
y have disjoint supports, Fo(z + y) = Fo(z) + Fo(y). Since H has codimension
at most 1 in E and F is infinite dimensional, there is a sequence of non-zero
elements (z;) in H satisfying sup (support ;) < inf (support z;4;) for all <.

As remarked above, Fj is linear on span(z;), so if we define T(z;) = F(z;), the
linear function T certainly satisfies hypothesis (1) of the theorem. Therefore the
theorem applies to E.

For (b), it is known that the even unit vectors ez, span a pre-Hilbert subspace
of the James space (see [1]). The B-convexity of span(ez,) and Theorems 2.6
of (2] and 2.5 of [3] imply that there is a linear map T on span(ez,) such that
[T(z) — F(z)| £ C||z|| for all z in span(ezn). Therefore the theorem applies.

(¢) For each n let (ei,n) be the usual unit vector basis of £, and let E be the
span of the e; », in £,(£}). Let (c,) be any sequence in £, :7 + % = 1. Let Fy be
the Ribe function and define F on E by

F((zn)) = ) caFo(zn)-

We claim that F' is quasi-linear. For this, if (z,) and (y») are in E, the

sequences (||zn||1) and (||lyn]l1) are £, sequences, and for each n,
|CnF0(37n + yn) - CnFﬂ(xﬂ) - cﬂFO(yn)| < c"(”xﬂlll + "ynlll)'
From Holder’s inequality,

|F((zn + yn)) = F((zn)) = F((4=))] < ll(ea)llg(lI(zn)llp + lI(zn)ll5)-

Theorem 4.7 of [2] gives that E is not a K-space. The F just defined proves
this directly, for suppose there is a linear T on E with |T(z) — F(z)| < C||z|| for
all z in E. Then since F(e; ) = 0 for all ¢, n, |T(ein)| < C for all 7, n. But

1 n
F (; Z e,-,,.) = —cy logn,
=1
a contradiction if we choose ¢, so that (¢, logn) is unbounded.
Finally, our theorem applies in this situation. To show this, for each n pick a
unit vector z, in £7. The sequence (z,) is equivalent to the usual basis of £,,

which is B-convex; the results already mentioned imply that there is a linear T
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on span(z,) such that |T(z) — F(z)| < C||z|| for all z in span(z,). This finishes
the proof. |

Note that, because of the separability, the corollary applies to the completions
of the twisted sums in (a)-(c) above.
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